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Abstract

In Bayesian statistics, the choice of the prior can have an important influence on the posterior
and the parameter estimation, especially when few data samples are available. To limit the added
subjectivity from a priori information, one can use the framework of objective priors, more
particularly, we focus on reference priors in this work. However, computing such priors is a
difficult task in general. Hence, we consider cases where the reference prior simplifies to the
Jeffreys prior. We develop in this paper a flexible algorithm based on variational inference which
computes approximations of priors from a set of parametric distributions using neural networks.
We also show that our algorithm can retrieve modified Jeffreys priors when constraints are
specified in the optimization problem to ensure the solution is proper. We propose a simple
method to recover a relevant approximation of the parametric posterior distribution usingMarkov
Chain Monte Carlo (MCMC) methods even if the density function of the parametric prior is not
known in general. Numerical experiments on several statistical models of increasing complexity
are presented. We show the usefulness of this approach by recovering the target distribution.
The performance of the algorithm is evaluated on both prior and posterior distributions, jointly
using variational inference and MCMC sampling.
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1 Introduction19

The Bayesian approach to statistical inference aims to produce estimations using the posterior20

distribution. The latter is derived by updating the prior distribution with the observed statistics21

thanks to Bayes’ theorem. However, the shape of the posterior can be heavily influenced by the22

prior choice when the amount of available data is limited or when the prior distribution is highly23

informative. For this reason, selecting a prior remains a daunting task that must be handled carefully.24

Hence, systematic methods have been introduced by statisticians to help in the choice of the prior25

distribution, both in cases where subjective knowledge is available or not (Press (2009)). Kass and26

Wasserman (1996) propose different ways of defining the level of non-informativeness of a prior27

distribution. The most famous method is the Maximum Entropy (ME) prior distribution that has28

been popularized by Jaynes (1957). In a Bayesian context, ME and Maximal Data Information (MDI)29

priors have been studied by Zellner (1996), Soofi (2000). Other candidates for objective priors are the30

so-called matching priors (Reid, Mukerjee, and Fraser (2003)), which are priors such that the Bayesian31

posterior credible intervals correspond to confidence intervals of the sampling model. Moreover,32

when a simpler model is known, the Penalizing Complexity (PC) priors are yet another rationale of33

choosing an objective (or reference) prior distribution (Simpson et al. (2017)).34

In this paper, we will focus on the reference prior theory. First introduced in Bernardo (1979a) and35

further formalized in Berger, Bernardo, and Sun (2009), the main rationale behind the reference36

prior theory is the maximization of the information brought by the data during Bayesian inference.37

Specifically, reference priors (RPs) are constructed to maximize the mutual information metric, which38

is defined as a divergence between itself and the posterior. In this way, it ensures that the data plays39

a dominant role in the Bayesian framework. There is consensus that the definition of RPs in high40

dimensions should be more subtle than simply maximizing the mutual information (see e.g. Berger,41

Bernardo, and Sun (2015)). A common approach consists in a hierarchical construction of reference42

priors, firstly mentioned in Bernardo (1979b) and detailed further in Berger and Bernardo (1992b). In43

this approach, an ordering is imposed on groups of parameters, and the reference prior is derived by44

sequentially maximizing the mutual information for each group.45

Reference priors are used in various statistical models, such as Gaussian process-based models46

(Paulo (2005), Gu and Berger (2016)), generalized linear models (Natarajan and Kass (2000)), and even47

Bayesian Neural Networks (Gao, Ramesh, and Chaudhari (2022)). The RPs are recognized for their48

objective nature in practical studies (D’Andrea (2021), Li and Gu (2021), Van Biesbroeck et al. (2024)),49

yet they suffer from their low computational feasibility. Indeed, the expression of the RPs often leads50

to an intricate theoretical expression, which necessitates a heavy numerical cost to be derived that51

2



su
bm

itte
d

becomes even more cumbersome as the dimensionality of the problem increases. Moreover, in many52

applications, a posteriori estimates are obtained using Markov Chain Monte Carlo (MCMC) methods,53

which require a large number of prior evaluations, further compounding the computational burden.54

The hierarchical construction of reference priors aggravates this problem even more, for that reason,55

we will focus solely on the maximization of the mutual information, which corresponds to the special56

case where no ordering is imposed on the parameters. In this context, it has been shown by Clarke57

and Barron (1994), and more recently by Van Biesbroeck (2024a) in a more general case, that the58

Jeffreys prior (Jeffreys (1946)) is the prior that maximizes the mutual information when the number59

of data samples tends to infinity. Hence, it will serve as the target distribution in our applications.60

In general, when we look for sampling or approximating a probability distribution, several approaches61

arise and may be used within a Bayesian framework. In this work, we focus on variational infer-62

ence methods. Variational inference seeks to approximate a complex target distribution 𝑝, —e.g. a63

posterior— by optimizing over a family of simpler parameterized distributions 𝑞𝜆. The goal then is64

to find the distribution 𝑞𝜆∗ that is the best approximation of 𝑝 by minimizing a divergence, such as65

the Kullback-Leibler (KL) divergence. Variational inference methods have been widely adopted in66

various contexts, including popular models such as Variational Autoencoders (VAEs) (Kingma and67

Welling (2019)), which are a class of generative models where one wants to learn the underlying68

distribution of data samples. We can also mention normalizing flows (Papamakarios et al. (2021),69

Kobyzev, Prince, and Brubaker (2021)), which consider diffeomorphism transformations to recover70

the density of the approximated distribution from the simpler one taken as input.71

Variational inference seems especially relevant in a context where one wants to approximate prior72

distributions defined as maximizers of a given metric. This kind of approach was introduced in73

Nalisnick and Smyth (2017) and Gauchy et al. (2023) in order to approximate the Jeffreys prior in74

one-dimensional models. The main difference being the choice of the objective function. In Nalisnick75

and Smyth (2017), the authors propose a variational inference procedure using a lower bound of the76

mutual information as an optimization criterion, whereas in Gauchy et al. (2023), stochastic gradient77

ascent is directly applied on the mutual information criterion.78

By building on these foundations, this paper proposes a novel variational inference algorithm designed79

to approximate reference priors by maximizing mutual information. Specifically, we focus on the80

case where no ordering is imposed on the parameters, in which case the reference prior coincides81

with the Jeffreys prior. For simplicity, we refer to them as variational approximations of the reference82

priors (VA-RPs).83

As in Nalisnick and Smyth (2017) and Gauchy et al. (2023), the Jeffreys prior is approximated in a84

parametric family of probability distributions implicitly defined by the push-forward probability85

distribution through a nonlinear function (see e.g. Papamakarios et al. (2021) and Marzouk et al.86

(2016)). We will focus in this paper to push-forward probability measures through neural networks.87

In comparison with the previous works, we benchmark extensively our algorithm on statistical88

models of different complexity and nature to assess its robustness. We also extend our algorithm89

to handle a more general case where a generalized mutual information criterion is defined using90

𝑓-divergences (Van Biesbroeck (2024a)). In this paper, we restrict the different benchmarks to 𝛼-91

divergences. Additionally, we extend the framework to allow the integration of linear constraints92

on the prior in the pipeline. That last feature permits handling situations where the Jeffreys prior93

may be improper (i.e. it integrates to infinity). Improper priors pose a challenge because (i) one can94

not sample from the a priori distribution, and (ii) they do not ensure that the posterior is proper,95

jeopardizing a posteriori inference. Recent work detailed in Van Biesbroeck (2024b) introduces96

linear constraints that ensure the proper aspects of priors maximizing the mutual information. Our97

algorithm incorporates these constraints, providing a principled way to address improper priors and98

ensuring that the resulting posterior distributions are well-defined and suitable for practical use.99
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First, we will introduce the reference prior theory of Bernardo (1979b) and the recent developments100

around generalized reference priors made by Van Biesbroeck (2024a) in Section 2. Next, the methodol-101

ogy to construct VA-RPs is detailed in Section 3. A stochastic gradient algorithm is proposed, as well102

as an augmented Lagrangian algorithm for the constrained optimization problem, for learning the103

parameters of an implicitly defined probability density function that will approximate the target prior.104

Moreover, a mindful trick to sample from the posterior distribution by MCMC using the implicitly105

defined prior distribution is proposed. In Section 4, different numerical experiments from various106

test cases are carried out in order to benchmark the VA-RP. Analytical statistical models where the107

Jeffreys prior is known are tested to allow comparison between the VA-RP and the Jeffreys prior.108

2 Reference priors theory109

The reference prior theory fits into the usual framework of statistical inference. The situation is the110

following: we observe i.i.d data samples X = (𝑋1, ..., 𝑋𝑁) ∈ 𝒳𝑁 with 𝒳 ⊂ ℝ𝑑. We suppose that the111

likelihood function 𝐿𝑁(X | 𝜃) = ∏𝑁
𝑖=1 𝐿(𝑋𝑖 | 𝜃) is known and 𝜃 ∈ Θ ⊂ ℝ𝑞 is the parameter we want to112

infer. Since we use the Bayesian framework, 𝜃 is considered to be a random variable with a prior113

distribution 𝜋. We also define the marginal likelihood 𝑝𝜋,𝑁(X) = ∫Θ 𝜋(𝜃)𝐿𝑁(X | 𝜃)𝑑𝜃 associated to the114

marginal probability measure ℙ𝜋,𝑁. The non-asymptotic RP, first introduced in Bernardo (1979a) and115

formalized in Berger, Bernardo, and Sun (2009), is defined to be one of the priors verifying:116

𝜋∗ ∈ argmax
𝜋∈𝒫

𝐼 (𝜋; 𝐿𝑁) , (1)

where 𝒫 is a class of admissible probability distributions and 𝐼 (𝜋; 𝐿𝑁) is the mutual information for117

the prior 𝜋 and the likelihood 𝐿𝑁 between the random variable of the parameters 𝜃 ∼ 𝜋 and the118

random variable of the data X ∼ ℙ𝜋,𝑁:119

𝐼 (𝜋; 𝐿𝑁) = ∫
𝒳𝑁

KL(𝜋(⋅ |X) || 𝜋)𝑝𝜋,𝑁(X)𝑑X (2)

Hence, 𝜋∗ is a prior that maximizes the Kullback-Leibler divergence between itself and its posterior120

averaged by the marginal distribution of datasets. The Kullback-Leibler divergence between two121

probability measures of density 𝑝 and 𝑞 defined on a generic set Ω writes:122

KL(𝑝 || 𝑞) = ∫
Ω
log (

𝑝(𝜔)
𝑞(𝜔)

) 𝑝(𝜔)𝑑𝜔.

Thus, 𝜋∗ is the prior that maximizes the influence of the data on the posterior distribution, justifying123

its reference (or objective) properties. The prior 𝜋∗ can also be interpreted using channel coding124

and information theory (MacKay (2003), chapter 9). Indeed, remark that 𝐼 (𝜋; 𝐿𝑁) corresponds to the125

mutual information 𝐼 (𝜃,X) between the random variable 𝜃 ∼ 𝜋 and the data X ∼ ℙ𝜋,𝑁, it measures126

the information that conveys the data X about the parameters 𝜃. The maximal value of this mutual127

information is defined as the channel’s capacity. 𝜋∗ thus corresponds to the prior distribution that128

maximizes the information about 𝜃 conveyed by the data X.129

Using Fubini’s theorem and Bayes’ theorem, we can derive an alternative and more practical expres-130

sion for the mutual information:131

𝐼 (𝜋; 𝐿𝑁) = ∫
Θ
KL(𝐿𝑁(⋅ | 𝜃)||𝑝𝜋,𝑁)𝜋(𝜃)𝑑𝜃. (3)

A more generalized definition of mutual information has been proposed in Van Biesbroeck (2024a)132

using 𝑓-divergences. The 𝑓-divergence mutual information is defined by133

𝐼D𝑓(𝜋; 𝐿𝑁) = ∫
Θ
D𝑓(𝑝𝜋,𝑁||𝐿𝑁(⋅ | 𝜃))𝜋(𝜃)𝑑𝜃, (4)
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with134

D𝑓(𝑝 || 𝑞) = ∫
Ω
𝑓 (

𝑝(𝜔)
𝑞(𝜔)

) 𝑞(𝜔)𝑑𝜔,

where 𝑓 is usually chosen to be a convex function mapping 1 to 0. Remark that the classical mutual135

information is obtained by choosing 𝑓 = − log, indeed, D− log(𝑝 || 𝑞) = KL(𝑞 || 𝑝). The formal RP is136

defined as 𝑁 goes to infinity, but in practice we are restricted to the case where 𝑁 takes a finite value.137

However, the limit case 𝑁 → +∞ is relevant because it has been shown in Clarke and Barron (1994),138

Van Biesbroeck (2024a) that the solution of this asymptotic problem is the Jeffreys prior when the139

mutual information is expressed as in Equation 2, or when it is defined using an 𝛼-divergence, as in140

Equation 4 with 𝑓 = 𝑓𝛼, where:141

𝑓𝛼(𝑥) =
𝑥𝛼 − 𝛼𝑥 − (1 − 𝛼)

𝛼(𝛼 − 1)
, 𝛼 ∈ (0, 1). (5)

The Jeffreys prior, denoted by 𝐽, is defined as follows:142

𝐽 (𝜃) ∝ det(ℐ (𝜃))1/2 with ℐ (𝜃) = −∫
𝒳𝑁

𝜕2 log 𝐿𝑁
𝜕𝜃2

(X | 𝜃) ⋅ 𝐿𝑁(X | 𝜃) 𝑑X.

We suppose that the likelihood function is smooth such that the Fisher information matrix ℐ is well-143

defined. The Jeffreys prior and the RP have the relevant property to be “invariant by reparametriza-144

tion”:145

∀𝜑 diffeomorphism, 𝐽 (𝜃) = |
𝜕𝜑
𝜕𝜃

| ⋅ 𝐽 (𝜑(𝜃)).

This property expresses non-information in the sense that if there is no information on 𝜃, there146

should not be more information on 𝜑(𝜃) when 𝜑 is a diffeomorphism: an invertible and differentiable147

transformation.148

Actually, the historical definition of RPs involves the KL-divergence in the definition of the mutual149

information. Yet the use of 𝛼-divergences instead is relevant because they can be seen as a continuous150

path between the KL-divergence and the Reverse-KL-divergence when 𝛼 varies from 0 to 1. We can151

also mention that for 𝛼 = 1/2, the 𝛼-divergence is the squared Hellinger distance whose square root152

is a metric since it is symmetric and verifies the triangle inequality.153

Technically, the formal RP is constructed such that its projection on every compact subset (or open154

subset in Muré (2018)) of Θ maximizes asymptotically the mutual information, which allows for155

improper distributions to be RPs in some cases. The Jeffreys prior is itself often improper.156

In our algorithm we consider probability distributions defined on the space Θ and not on sequences157

of subsets. A consequence of this statement is that our algorithm may tend to approximate improper158

priors in some cases. Indeed, any given sample by our algorithm results, by construction, from a159

proper distribution, which is expected to be a good approximation of the solution of the optimization160

problem expressed in Equation 1. This approach is justified to some extent since in the context of161

Q-vague convergence defined in Bioche and Druilhet (2016) for instance, improper priors can be162

the limit of sequences of proper priors. Although this theoretical notion of convergence is defined,163

no concrete metric is given, making quantification of the difference between proper and improper164

priors infeasible in practice.165

The term “reference prior” is now associated with a more general, hierarchical construction. We166

mentioned in the introduction the hierarchical construction of the reference prior, we present rapidly167

the case where the dimension 𝑞 = 2, i.e. 𝜃 = (𝜃1, 𝜃2) ∈ Θ1 × Θ2 with 𝜃1 and 𝜃2 being in their own168

separate groups:169
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• We obtain the first level conditional prior: 𝜋∗1 (⋅ | 𝜃2) on 𝜃1 by maximizing asymptotically the170

mutual information with fixed 𝜃2 in the likelihood 𝐿𝑁.171

• We define the second level likelihood using the previous prior as follows:172

𝐿′𝑁(𝑋 | 𝜃2) = ∫
Θ1

𝐿𝑁(𝑋 | 𝜃1, 𝜃2)𝜋∗1 (𝜃1 | 𝜃2)𝑑𝜃1.

• We define and solve the corresponding asymptotic optimization problem with this function as173

our main likelihood function so we can obtain the second level prior: 𝜋∗2 on 𝜃2.174

• This defines the hierarchical RP on 𝜃, which is of the form: 𝜋∗(𝜃) = 𝜋∗1 (𝜃1 | 𝜃2)𝜋∗2 (𝜃2).175

This construction can be extended to any number of groups of parameters with any ordering as176

presented in Berger and Bernardo (1992b). However, it is important to note that priors defined177

through this procedure can still be improper.178

In summary, we introduced several priors: the Jeffreys prior, the non-asymptotic RP that maximizes179

the generalized mutual information, which depends on the chosen 𝑓-divergence and the value of180

𝑁, the formal RP, that is obtained such that its projection on every (compact) subset maximizes181

asymptotically the generalized mutual information, hence it only depends on the 𝑓-divergence, and182

finally, the reference prior in the hierarchical sense. The latter reduces to the formal RP (i) in the183

one-dimensional case and (ii) in the multi-dimensional case, when all components of 𝜃 are placed184

in the same group. We will always be in one of these two cases in the following. In very specific185

situations, where the likelihood function is non-regular (Ghosal and Samanta (1997)) or because of186

the choice of 𝑓 (Liu et al. (2014)), the formal RP and the Jeffreys prior can be different. However, as187

long as the likelihood is smooth which is verified for most statistical models and the KL-divergence188

or the 𝛼-divergence with 𝛼 ∈ (0, 1) is used, these two priors are actually the same.189

The algorithm we develop aims at solving the mutual information optimization problem with 𝑁190

fixed, thus our target prior is technically the non-asymptotic RP, nevertheless, the latter has no191

closed form expression, making the validation of the algorithm infeasible. If 𝑁 is large enough, this192

prior should be close to the formal RP which is equal to the Jeffreys prior in this framework. Hence,193

the Jeffreys prior serves as the target prior in the numerical applications because it can either be194

computed explicitly or approximated through numerical integration.195

Furthermore, as mentioned in the introduction, improper priors can also compromise the validity of196

a posteriori estimates in some cases. To address this issue, we adapted our algorithm to handle the197

developments made in Van Biesbroeck (2024b), which suggest a method to define proper objective198

priors by simply resolving a constrained version of the initial optimization problem:199

𝜋̃∗ ∈ argmax
𝜋 prior

s.t.𝒞(𝜋)<∞

𝐼D𝑓𝛼
(𝜋; 𝐿𝑁), (6)

where 𝒞(𝜋) defines a constraint of the form ∫Θ 𝑎(𝜃)𝜋(𝜃)𝑑𝜃, 𝑎 being a positive function. When the200

mutual information in the above optimization problem is defined from an 𝛼-divergence, and when 𝑎201

verifies202

∫
Θ
𝐽 (𝜃)𝑎(𝜃)1/𝛼𝑑𝜃 < ∞ and ∫

Θ
𝐽 (𝜃)𝑎(𝜃)1+1/𝛼𝑑𝜃 < ∞, (7)

the author has proven that the constrained solution 𝜋̃∗ asymptotically takes the following form:203

𝜋̃∗(𝜃) ∝ 𝐽 (𝜃)𝑎(𝜃)1/𝛼,

which is proper. This result implies that in the case where constraints are imposed, the target prior204

becomes this modified version of the Jeffreys prior.205

6



su
bm

itte
d

3 Variational approximation of the reference prior (VA-RP)206

3.1 Implicitly defined parametric probability distributions using neural networks207

Variational inference refers to techniques that aim to approximate a probability distribution by solving208

an optimization problem —that often takes a variational form, such as maximizing evidence lower209

bound (ELBO) (Kingma and Welling (2014)). It is thus relevant to consider them for approximating210

RPs, as the goal is to maximize, w.r.t. the prior, the mutual information defined in Equation 3.211

We restrict the set of priors to a parametric space {𝜋𝜆, 𝜆 ∈ Λ}, Λ ⊂ ℝ𝐿, reducing the original212

optimization problem into a finite-dimensional one. The optimization problem in Equation 1 or213

Equation 6 becomes finding argmax
𝜆∈Λ

𝐼D𝑓(𝜋𝜆; 𝐿𝑁). Our approach is to define the set of priors 𝜋𝜆214

implicitly, as in Gauchy et al. (2023):215

𝜃 ∼ 𝜋𝜆 ⟺ 𝜃 = 𝑔(𝜆, 𝜀) and 𝜀 ∼ ℙ𝜀.

Here, 𝑔 is a measurable function parameterized by 𝜆, typically a neural network with 𝜆 corresponding216

to its weights and biases, and we impose that 𝑔 is differentiable with respect to 𝜆. The variable 𝜀 can217

be seen as a latent variable. It has an easy-to-sample distribution ℙ𝜀 with a simple density function.218

In practice we use the centered multivariate Gaussian 𝒩 (0, 𝕀𝑝×𝑝). The construction described above219

allows the consideration of a vast family of priors. However, except in very simple cases, the density220

of 𝜋𝜆 is not known and cannot be evaluated. Only samples of 𝜃 ∼ 𝜋𝜆 can be obtained.221

In the work of Nalisnick and Smyth (2017), this implicit sampling method is compared to several222

other algorithms used to learn RPs in the case of one-dimensional models, where the RP is always the223

Jeffreys prior. Among these methods, we can mention an algorithm proposed by Berger, Bernardo,224

and Sun (2009) which does not sample from the RP but only evaluates it for specific points, or an225

MCMC-based approach by Lafferty and Wasserman (2001), which is inspired from the previous one226

but can sample from the RP.227

According to this comparison, implicit sampling is, in the worst case, competitive with the other228

methods, but achieves state-of-the-art results in the best case. Hence, computing the variational229

approximation of the RP, which we will refer to as the VA-RP, seems to be a promising technique. We230

admit that the term VA-RP is a slight abuse of terminology in our case since (i) the target prior is the231

(eventually constrained) Jeffreys prior, which is not necessarily the reference prior when an ordering232

is imposed on the parameters; and (ii) there is no guarantee that this target prior can be actually233

reproduced by the neural network. Indeed, the VA-RP tends to be the prior that maximizes the234

mutual information for a fixed value of 𝑁, within a family of priors that is, by design, parameterized235

by 𝜆. Since we are aware of those approximations, we strive to assess that our priors are good236

approximations of the target priors in our numerical experiments.237

The situations presented by Gauchy et al. (2023) and Nalisnick and Smyth (2017) are in dimension238

one and use the Kullback-Leibler divergence within the definition of the mutual information.239

The construction of the algorithm that we propose in the following accommodates multi-dimensional240

modeling. It is also compatible with the extended form of the mutual information, as defined in241

Equation 3 from an 𝑓-divergence.242

The choice of the neural network is up to the user, we will showcase in our numerical applications243

mostly simple networks, composed of one fully connected linear layer and one activation function.244

However, the method can be used with deeper networks, such as normalizing flows (Papamakarios245

et al. (2021)), or larger networks obtained through a mixture model of smaller networks utilizing the246

“Gumbel-Softmax trick” (Jang, Gu, and Poole (2017)) for example. Such choices lead to more flexible247

parametric distributions, but increase the difficulty of fine-tuning hyperparameters.248
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3.2 Learning the VA-RP using stochastic gradient algorithm249

The VA-RP is formulated as the solution to the following optimization problem:250

𝜋𝜆∗ = argmax
𝜆∈Λ

𝒪D𝑓(𝜋𝜆; 𝐿𝑁), (8)

where 𝜋𝜆 is parameterized through the relation between a latent variable 𝜀 and the parameter 𝜃, as251

outlined in the preceding Section. The function 𝒪D𝑓 is called the objective function, it is maximized252

using stochastic gradient optimization, following the approach described in Gauchy et al. (2023).253

It is intuitive to fix 𝒪D𝑓 to equal 𝐼D𝑓 , in order to maximize the mutual information of interest. In this254

Section, we suggest alternative objective functions that can be considered to compute the VA-RP.255

Our method is adaptable to any objective function 𝒪D𝑓 that satisfies the following definition.256

Definition 1. An objective function 𝒪D𝑓 ∶ 𝜆 ∈ Λ ↦ 𝒪D𝑓(𝜋𝜆; 𝐿𝑁) ∈ ℝ is said to be admissible if there257

exists a mapping ̃𝒪D𝑓 ∶ Θ → ℝ such that the gradient of 𝒪D𝑓 w.r.t. 𝜆 = (𝜆1, … , 𝜆𝐿) is258

𝜕𝒪D𝑓

𝜕𝜆𝑙
(𝜋𝜆; 𝐿𝑁) = 𝔼𝜀 [

𝑞
∑
𝑗=1

𝜕 ̃𝒪D𝑓

𝜕𝜃𝑗
(𝑔(𝜆, 𝜀))

𝜕𝑔𝑗
𝜕𝜆𝑙

(𝜆, 𝜀)] (9)

for any 𝑙 ∈ {1, … , 𝐿}.259

Here, ̃𝒪D𝑓 is a generic notation for a function that depends in practice on 𝑓 and the likelihood260

function. We also assume that its gradient is computed using Monte Carlo sampling. The framework261

of admissible objective functions allows for flexible implementation, as it permits the separation of262

sampling and differentiation operations:263

• The gradient of ̃𝒪D𝑓 mostly relies on random sampling and depends only on the likelihood 𝐿𝑁264

and the function 𝑓.265

• The gradient of 𝑔 is computed independently. In practice, it is possible to leverage usual266

differentiation techniques for the neural network. In our work, we rely on PyTorch’s automatic267

differentiation feature “autograd” (Paszke et al. (2019)).268

This separation is advantageous as automatic differentiation tools —such as autograd— are well-suited269

to differentiating complex networks but struggle with functions incorporating randomness.270

This way, the optimization problem can be addressed using stochastic gradient optimization, ap-271

proximating at each step the gradient in Equation 9 via Monte Carlo estimates. In our experiments,272

the implementation of the algorithm is done with the popular Adam optimizer (Kingma and Ba273

(2017)), with its default hyperparameters, 𝛽1 = 0.9 and 𝛽2 = 0.999. The learning rate is tuned more274

specifically for each numerical benchmark.275

Concerning the choice of objective function, we verify that in appendix Section 6.1276

𝜕𝐼D𝑓

𝜕𝜆𝑙
(𝜋𝜆; 𝐿𝑁) = 𝔼𝜀 [

𝑞
∑
𝑗=1

𝐹𝑗 ⋅
𝜕𝑔𝑗
𝜕𝜆𝑙

(𝜆, 𝜀)]

+ 𝔼𝜃∼𝜋𝜆 [𝔼X∼𝐿𝑁(⋅|𝜃) [
1

𝐿𝑁(X | 𝜃)
𝜕𝑝𝜆
𝜕𝜆𝑙

(X)𝑓 ′ (
𝑝𝜆(X)

𝐿𝑁(X | 𝜃)
)]] ,

(10)

where:277

𝐹𝑗 = 𝔼X∼𝐿𝑁(⋅ | 𝜃) [
𝜕 log 𝐿𝑁

𝜕𝜃𝑗
(X | 𝜃)𝐹 (

𝑝𝜆(X)
𝐿𝑁(X | 𝜃)

)] ,

with 𝐹(𝑥) = 𝑓 (𝑥) − 𝑥𝑓 ′(𝑥) and 𝑝𝜆 is a shortcut notation for 𝑝𝜋𝜆,𝑁 being the marginal distribution278

under 𝜋𝜆.279
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Remark that only the case 𝑓 = − log is considered by Gauchy et al. (2023), but it leads to a sim-280

plification of the gradient since the second term vanishes. Each term in the above equations is281

approximated as follows:282

⎧⎪
⎨
⎪
⎩

𝑝𝜆(X) = 𝔼𝜃∼𝜋𝜆[𝐿𝑁(X | 𝜃)] ≈ 1
𝑇

𝑇
∑
𝑡=1

𝐿𝑁(X | 𝑔(𝜆, 𝜀𝑡)) where 𝜀1, ... , 𝜀𝑇 ∼ ℙ𝜀

𝐹𝑗 ≈
1
𝑈

𝑈
∑
𝑢=1

𝜕 log 𝐿𝑁
𝜕𝜃𝑗

(X𝑢 | 𝜃)𝐹 (
𝑝𝜆(X𝑢)

𝐿𝑁(X𝑢 | 𝜃)
) where X1, ... ,X𝑈 ∼ ℙX|𝜃.

(11)

In their work, Nalisnick and Smyth (2017) propose an alternative objective function to optimize, that283

we call 𝐵D𝑓 .284

This function corresponds to a lower bound of the mutual information. It is derived from an upper285

bound on the marginal distribution and relies on maximizing the likelihood. Their approach is only286

presented for 𝑓 = − log, we generalize the lower bound for any decreasing function 𝑓:287

𝐵D𝑓(𝜋; 𝐿𝑁) = ∫
Θ
∫
𝒳𝑁

𝑓 (
𝐿𝑁(X | ̂𝜃𝑀𝐿𝐸)
𝐿𝑁(X | 𝜃)

) 𝜋(𝜃)𝐿𝑁(X | 𝜃)𝑑X𝑑𝜃,

where ̂𝜃𝑀𝐿𝐸 being the maximum likelihood estimator (MLE). It only depends on the likelihood and288

not on 𝜆 which simplifies the gradient computation:289

𝜕𝐵D𝑓

𝜕𝜆𝑙
(𝜋𝜆; 𝐿𝑁) = 𝔼𝜀 [

𝑞
∑
𝑗=1

𝜕𝐵̃D𝑓

𝜕𝜃𝑗
(𝑔(𝜆, 𝜀))

𝜕𝑔𝑗
𝜕𝜆𝑙

(𝜆, 𝜀)] ,

where:290

𝜕𝐵̃D𝑓

𝜕𝜃𝑗
(𝜃) = 𝔼X∼𝐿𝑁(⋅ | 𝜃) [

𝜕 log 𝐿𝑁
𝜕𝜃𝑗

(X | 𝜃)𝐹 (
𝐿𝑁(X | ̂𝜃𝑀𝐿𝐸)
𝐿𝑁(X | 𝜃)

)] .

Its form corresponds to the one of an admissible objective function (Equation 9), with:291

𝐵̃D𝑓(𝜃) = ∫
𝒳𝑁

𝐿𝑁(X | 𝜃)𝑓 (
𝐿𝑁(X | ̂𝜃𝑀𝐿𝐸)
𝐿𝑁(X | 𝜃)

) 𝑑X.

Given that 𝑝𝜆(X) ≤ max𝜃′∈Θ 𝐿𝑁(X | 𝜃′) = 𝐿𝑁(X | ̂𝜃𝑀𝐿𝐸) for all 𝜆, we have 𝐵D𝑓(𝜋𝜆; 𝐿𝑁) ≤ 𝐼D𝑓(𝜋𝜆; 𝐿𝑁).292

Since 𝑓𝛼, used in 𝛼-divergence (Equation 5), is not decreasing, we replace it with ̂𝑓𝛼 defined hereafter,293

because D𝑓𝛼 = D ̂𝑓𝛼
:294

̂𝑓𝛼(𝑥) =
𝑥𝛼 − 1
𝛼(𝛼 − 1)

= 𝑓𝛼(𝑥) +
1

𝛼 − 1
(𝑥 − 1).

The use of this function results in a more stable computation overall. Moreover, one argument for295

the use of 𝛼-divergences rather that the KL-divergence, is that we have an universal and explicit296

upper bound on the mutual information:297

𝐼D𝑓𝛼
(𝜋; 𝐿𝑁) = 𝐼D ̂𝑓𝛼

(𝜋; 𝐿𝑁) ≤ ̂𝑓𝛼(0) =
1

𝛼(1 − 𝛼)
.

This bound can be an indicator on how well the mutual information is optimized, although there is298

no guarantee that it can be attained in general.299
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The gradient of the objective function 𝐵D𝑓 can be approximated via Monte Carlo, in the same manner300

as in Equation 11.301

It requires to compute the MLE, which can also be done using samples of 𝜀:302

𝐿𝑁(X | ̂𝜃𝑀𝐿𝐸) ≈ max
𝑡∈{1,…,𝑇 }

𝐿𝑁(X | 𝑔(𝜆, 𝜀𝑡)) where 𝜀1, ..., 𝜀𝑇 ∼ ℙ𝜀.

3.3 Adaptation for the constrained VA-RP303

Reference priors and Jeffreys priors are often criticized, because they can lead to improper posteriors.304

However, the variational optimization problem defined in Equation 8 can be adapted to incorporate305

simple constraints on the prior. As mentioned in Section 2, there exist specific constraints that would306

make the theoretical solution proper.307

This is also a way to incorporate expert knowledge to some extent. We consider 𝐾 constraints of the308

form:309

∀ 𝑘 ∈ {1, … , 𝐾}, 𝒞𝑘(𝜋𝜆) = 𝔼𝜃∼𝜋𝜆 [𝑎𝑘(𝜃)] − 𝑏𝑘,

with 𝑎𝑘: Θ ↦ ℝ+ integrable and linearly independent functions, and 𝑏𝑘 ∈ ℝ. We then adapt the310

optimization problem in Equation 8 to propose the following constrained optimization problem:311

𝜋𝐶𝜆∗ ∈ argmax
𝜆∈Λ

𝒪D𝑓(𝜋𝜆; 𝐿𝑁)

subject to ∀ 𝑘 ∈ {1, … , 𝐾}, 𝒞𝑘(𝜋𝜆) = 0,

where 𝜋𝐶𝜆∗ is the constrained VA-RP. The optimization problem with the mutual information has an312

explicit asymptotic solution for proper priors verifying the previous conditions:313

• In the case of the KL-divergence (Bernardo (2005)):314

𝜋𝐶(𝜃) ∝ 𝐽 (𝜃) exp (1 +
𝐾
∑
𝑘=1

𝜈𝑘𝑎𝑘(𝜃)) .

• In the case of 𝛼-divergences (Van Biesbroeck (2024b)):315

𝜋𝐶(𝜃) ∝ 𝐽 (𝜃) (1 +
𝐾
∑
𝑘=1

𝜈𝑘𝑎𝑘(𝜃))
1/𝛼

.

where 𝜈1, … , 𝜈𝐾 ∈ ℝ are constants determined by the constraints.316

Recent work by Van Biesbroeck (2024b) makes it possible to build a proper objective prior under a317

relevant constraint function with 𝛼-divergence. The theorem considers 𝑎 ∶ Θ ↦ ℝ+ which verifies318

the conditions expressed in Equation 7. Letting 𝒫𝑎 be the set of proper priors 𝜋 on Θ such that319

𝜋 ⋅ 𝑎 ∈ 𝐿1, the prior 𝜋̃∗ that maximizes the mutual information under the constraint 𝜋̃∗ ∈ 𝒫𝑎 is:320

𝜋̃∗(𝜃) ∝ 𝐽 (𝜃)𝑎(𝜃)1/𝛼.

We propose the following general method to approximate the VA-RP under such constraints:321

• Compute the VA-RP 𝜋𝜆 ≈ 𝐽, in the same manner as for the unconstrained case.322
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• Estimate the constants 𝒦 and 𝑐 using Monte Carlo samples from the VA-RP, as:323

𝒦𝜆 = ∫
Θ
𝜋𝜆(𝜃)𝑎(𝜃)1/𝛼𝑑𝜃 ≈ ∫

Θ
𝐽 (𝜃)𝑎(𝜃)1/𝛼𝑑𝜃 = 𝒦,

324

𝑐𝜆 = ∫
Θ
𝜋𝜆(𝜃)𝑎(𝜃)1+(1/𝛼)𝑑𝜃 ≈ ∫

Θ
𝐽 (𝜃)𝑎(𝜃)1+(1/𝛼)𝑑𝜃 = 𝑐.

• Since we have the equality:325

𝔼𝜃∼𝜋̃∗[𝑎(𝜃)] = ∫
Θ
𝜋̃∗(𝜃)𝑎(𝜃)𝑑𝜃 = 1

𝒦 ∫
Θ
𝐽 (𝜃)𝑎(𝜃)1+(1/𝛼)𝑑𝜃 = 𝑐

𝒦
,

we compute the constrained VA-RP using the constraint: 𝔼𝜃∼𝜋𝜆′[𝑎(𝜃)] = 𝑐𝜆/𝒦𝜆 to approximate326

𝜋𝜆′ ≈ 𝜋̃∗.327

One might use different variational approximations for 𝜋𝜆 and 𝜋𝜆′ because 𝐽 and 𝜋̃∗ could have very328

different forms depending on the function 𝑎.329

The idea is to solve the constrained optimization problem as an unconstrained problem but with a330

Lagrangian as the objective function. We take the work of Nocedal and Wright (2006) as support.331

We denote 𝜂 the Lagrange multiplier. Instead of using the usual Lagrangian function, Nocedal and332

Wright (2006) suggest adding a term defined with 𝜂̃, a vector with positive components which serve333

as penalization coefficients, and 𝜂′ which can be thought of a prior estimate of 𝜂, although not in a334

Bayesian sense. The objective is to find a saddle point (𝜆∗, 𝜂∗) which is a solution of the updated335

optimization problem:336

max
𝜆

(min
𝜂

𝒪D𝑓(𝜋𝜆; 𝐿𝑁) +
𝐾
∑
𝑘=1

𝜂𝑘𝒞𝑘(𝜋𝜆) +
𝐾
∑
𝑘=1

1
2𝜂̃𝑘

(𝜂𝑘 − 𝜂′𝑘)
2) .

One can see that the third term serves as a penalization for large deviations from 𝜂′. The minimization337

on 𝜂 is feasible because it is a convex quadratic, and we get 𝜂 = 𝜂′ − 𝜂̃ ⋅ 𝒞 (𝜋𝜆). Replacing 𝜂 by its338

expression leads to the resolution of the problem:339

max
𝜆

𝒪D𝑓(𝜋𝜆; 𝐿𝑁) +
𝐾
∑
𝑘=1

𝜂′𝑘𝒞𝑘(𝜋𝜆) −
𝐾
∑
𝑘=1

𝜂̃𝑘
2
𝒞𝑘(𝜋𝜆)2.

This motivates the definition of the augmented Lagrangian:340

ℒ𝐴(𝜆, 𝜂, 𝜂̃) = 𝒪D𝑓(𝜋𝜆; 𝐿𝑁) +
𝐾
∑
𝑘=1

𝜂𝑘𝒞𝑘(𝜋𝜆) −
𝐾
∑
𝑘=1

𝜂̃𝑘
2
𝒞𝑘(𝜋𝜆)2.

Its gradient has a form that is compatible with our algorithm, as depicted in Section 3.2 (see Equa-341

tion 9):342

𝜕ℒ𝐴
𝜕𝜆

(𝜆, 𝜂, 𝜂̃) =
𝜕𝒪D𝑓

𝜕𝜆
(𝜋𝜆; 𝐿𝑁) + 𝔼𝜀 [(

𝐾
∑
𝑘=1

𝜕𝑎𝑘
𝜕𝜃

(𝑔(𝜆, 𝜀))(𝜂𝑘 − 𝜂̃𝑘𝒞𝑘(𝜋𝜆)))
𝜕𝑔
𝜕𝜆

(𝜆, 𝜀)]

= 𝔼𝜀 [(
𝜕 ̃𝒪
𝜕𝜃

(𝑔(𝜆, 𝜀)) +
𝐾
∑
𝑘=1

𝜕𝑎𝑘
𝜕𝜃

(𝑔(𝜆, 𝜀))(𝜂𝑘 − 𝜂̃𝑘𝒞𝑘(𝜋𝜆)))
𝜕𝑔
𝜕𝜆

(𝜆, 𝜀)] .

In practice, the augmented Lagrangian algorithm is of the form:343

{
𝜆𝑡+1 = argmax

𝜆
ℒ𝐴(𝜆, 𝜂𝑡, 𝜂̃)

∀𝑘 ∈ {1, … , 𝐾}, 𝜂𝑡+1𝑘 = 𝜂𝑡𝑘 − 𝜂̃𝑘 ⋅ 𝒞𝑘(𝜋𝜆𝑡+1).
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In our implementation, 𝜂 is updated every 100 epochs. The penalty parameter 𝜂̃ can be interpreted344

as the learning rate of 𝜂, we use an adaptive scheme inspired by Basir and Senocak (2023) where345

we check if the largest constraint value ||𝒞 (𝜋𝜆)||∞ is higher than a specified threshold 𝑀 or not. If346

||𝒞 (𝜋𝜆)||∞ > 𝑀, we multiply 𝜂̃ by 𝑣, otherwise we divide by 𝑣. We also impose a maximum value 𝜂̃𝑚𝑎𝑥.347

3.4 Posterior sampling using implicitly defined prior distributions348

Although our main object of study is the prior distribution, one needs to find the posterior distribution349

given an observed dataset X in order to do the inference on 𝜃. The posterior is of the form:350

𝜋𝜆(𝜃 |X) =
𝜋𝜆(𝜃)𝐿𝑁(X | 𝜃)

𝑝𝜆(X)
.

As discussed in the introduction, one can approximate the posterior distribution when knowing351

the prior either by using MCMC or variational inference. In both cases, knowing the marginal352

distribution is not required. Indeed, MCMC samplers inspired by the Metropolis-Hastings algorithm353

can be applied, even if the posterior distribution is only known up to a multiplicative constant.354

The same can be said for variational approximation since the ELBO can be expressed without the355

marginal.356

The issue here is that the density function 𝜋𝜆(𝜃) is not explicit and can not be evaluated, except for357

very simple cases. However, we imposed that the distribution of the variable 𝜀 is simple enough, so358

one is able to evaluate its density. We propose to use 𝜀 as the variable of interest instead of 𝜃 because359

it lets us circumvent this issue. In practice, the idea is to reverse the order of operations: instead of360

sampling 𝜀, then transforming 𝜀 into 𝜃, which defines the prior on 𝜃, and finally sampling posterior361

samples of 𝜃 given 𝑋, one can proceed as follows:362

• Define the posterior distribution on 𝜀:363

𝜋𝜀,𝜆(𝜀 |X) =
𝑝𝜀(𝜀)𝐿𝑁(X | 𝑔(𝜆, 𝜀))

𝑝𝜆(X)
,

where 𝑝𝜀 is the probability density function of 𝜀. 𝜋𝜀,𝜆(𝜀 |X) is known up to a multiplicative364

constant since the marginal 𝑝𝜆 is intractable in general. It is indeed a probability distribution365

on ℝ𝑝 because:366

𝑝𝜆(X) = ∫
Θ
𝜋𝜆(𝜃)𝐿𝑁(X | 𝜃)𝑑𝜃 = ∫

ℝ𝑝
𝐿𝑁(X | 𝑔(𝜆, 𝜀))𝑑ℙ𝜀

• Sample posterior 𝜀 samples from the previous distribution, approximated by MCMC or varia-367

tional inference.368

• Apply the transformation 𝜃 = 𝑔(𝜆, 𝜀), and one gets posterior 𝜃 samples: 𝜃 ∼ 𝜋𝜆(⋅ |X).369

More precisely, we denote for a fixed dataset X:370

𝜃 ∼ 𝜋̃𝜆(⋅ |X) ⟺ 𝜃 = 𝑔(𝜆, 𝜀) with 𝜀 ∼ 𝜋𝜀,𝜆(⋅ |X).

The previous approach is valid because 𝜋𝜆(⋅ |X) and 𝜋̃𝜆(⋅ |X) lead to the same distribution, as proven371

by the following derivation: let 𝜑 be a bounded and measurable function on Θ.372
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Using the definitions of the different distributions, we have that:373

∫
Θ
𝜑(𝜃)𝜋̃𝜆(𝜃 |X)𝑑𝜃 = ∫

ℝ𝑝
𝜑(𝑔(𝜆, 𝜀))𝜋𝜀,𝜆(𝜀 |X)𝑑𝜀

= ∫
ℝ𝑝

𝜑(𝑔(𝜆, 𝜀))
𝑝𝜀(𝜀)𝐿𝑁(𝑋 | 𝑔(𝜆, 𝜀))

𝑝𝜆(X)
𝑑𝜀

= ∫
Θ
𝜑(𝜃)𝜋𝜆(𝜃)

𝐿𝑁(X | 𝜃)
𝑝𝜆(X)

𝑑𝜃

= ∫
Θ
𝜑(𝜃)𝜋𝜆(𝜃 |X)𝑑𝜃.

As mentioned in the last Section, when the Jeffreys prior is improper, we compare the posterior374

distributions, namely, the exact reference posterior when available and the posterior obtained from375

the VA-RP using the previous method. Altogether, we are able to sample 𝜃 from the posterior even if376

the density of the parametric prior 𝜋𝜆 on 𝜃 is unavailable due to an implicit definition of the prior377

distribution.378

For our computations, we choose MCMC sampling, namely an adaptive Metropolis-Hastings sampler379

with a multivariate Gaussian as the proposition distribution. The adaptation scheme is the following:380

for each batch of iterations, we monitor the acceptance rate and we adapt the variance parameter of381

the Gaussian proposition in order to have an acceptance rate close to 40%, which is the advised value382

(Gelman et al. (2013)) for models in small dimensions. We refer to this algorithm as MH(𝜀). Because383

we apply MCMC sampling on variable 𝜀 ∈ ℝ𝑝 with a reasonable value for 𝑝, we expect this step of384

the algorithm to be fast compared to the computation of the VA-RP.385

One could also use classic variational inference on 𝜀 instead, but the parametric set of distributions386

must be chosen wisely. In VAEs for instance, multivariate Gaussian are often considered since it387

simplifies the KL-divergence term in the ELBO. However, this might be too simplistic in our case388

since we must apply the neural network 𝑔 to recover 𝜃 samples. This means that the approximated389

posterior on 𝜃 belongs to a very similar set of distributions to those used for the VA-RP, since we390

already used a multivariate Gaussian for the prior on 𝜀. On the other hand, applying once again391

the implicit sampling approach does not exploit the additional information we have on 𝜋𝜀,𝜆(𝜀 |X)392

compared to 𝜋𝜆(𝜃), specifically, that its density function is known up to a multiplicative constant.393

Hence, we argue that using a Metropolis-Hastings sampler is more straightforward in this situation.394

4 Numerical experiments395

We want to apply our algorithm to different statistical models, the first one is the multinomial model,396

which is the simplest in the sense that the target distributions —the Jeffreys prior and posterior—397

have explicit expressions and are part of a usual parametric family of proper distributions. The398

second model —the probit model— will be highlighted with supplementary computations, in regards399

to the assessment of the stability of our stochastic algorithm, and also with the addition of a moment400

constraint.401

The one-dimensional statistical model of the Gaussian distribution with variance parameter is also402

presented in Section 6. We stress that this case is a toy model, where the target distributions, namely,403

the Jeffreys prior and posterior, with or without constraints, can be derived exactly. Essentially, this404

lets us verify that the output of the algorithm is relevant when compared to the true solution.405

Since we only have to compute quotients of the likelihood or the gradient of the log-likelihood, we406

can omit the multiplicative constant which does not depend on 𝜃.407
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As for the output of the neural networks, the activation function just before the output is different408

for each statistical model, the same can be said for the learning rate. In some cases, we apply an409

affine transformation on the variable 𝜃 to avoid divisions by zero during training. In every test case,410

we consider simple networks for an easier fine-tuning of the hyperparameters and also because the411

precise computation of the loss function is an important bottleneck.412

For the initialization of the neural networks, biases are set to zero and weights are randomly sampled413

from a Gaussian distribution. As for the several hyperparameters, we take 𝑁 = 10, 𝑇 = 50 and414

𝑈 = 1000 unless stated otherwise. We take a latent space of dimension 𝑝 = 50. For the posterior415

calculations, we keep the last 5 ⋅ 104 samples from the Markov chain over a total of 105 Metropolis-416

Hastings iterations. Increasing 𝑁 is advised in order to get closer to the asymptotic case for the417

optimization problem, and increasing 𝑈 and 𝑇 is relevant for the precision of theMonte Carlo estimates.418

Nevertheless, this increases computation times and we have to do a trade-off between the former419

and the latter. As for the constrained optimization, we use 𝑣 = 2, 𝑀 = 0.005 and 𝜂̃𝑚𝑎𝑥 = 104.420

4.1 Multinomial model421

The multinomial distribution can be interpreted as the generalization of the binomial distribution422

for higher dimensions. We denote: 𝑋𝑖 ∼ Multinomial(𝑛, (𝜃1, ..., 𝜃𝑞)) with 𝑛 ∈ ℕ∗, X ∈ 𝒳𝑁 and 𝜃 ∈ Θ,423

with: 𝒳 = {𝑋 ∈ {0, ..., 𝑛}𝑞 | ∑𝑞
𝑗=1 𝑋 𝑗 = 𝑛} and Θ = {𝜃 ∈ (0, 1)𝑞 | ∑𝑞

𝑗=1 𝜃𝑗 = 1}. We use 𝑛 = 10 and424

𝑞 = dim(𝜃) = 4.425

The likelihood function and the gradient of its logarithm are:426

𝐿𝑁(X | 𝜃) =
𝑁
∏
𝑖=1

𝑛!
𝑋 1
𝑖 ! ⋅ ... ⋅ 𝑋

𝑞
𝑖 !

𝑞
∏
𝑗=1

𝜃𝑋
𝑗
𝑖

𝑗 ∝
𝑁
∏
𝑖=1

𝑞
∏
𝑗=1

𝜃𝑋
𝑗
𝑖

𝑗

∀(𝑖, 𝑗),
𝜕 log 𝐿
𝜕𝜃𝑗

(𝑋𝑖 | 𝜃) =
𝑋 𝑗
𝑖
𝜃𝑗
.

TheMLE is available: ∀𝑗, ̂𝜃𝑀𝐿𝐸(𝑗) =
1
𝑛𝑁 ∑𝑁

𝑖=1 𝑋
𝑗
𝑖 and the Jeffreys prior is the Dir𝑞 (

1
2 , ...,

1
2) distribution,427

which is proper. The Jeffreys posterior is a conjugate Dirichlet distribution:428

𝐽𝑝𝑜𝑠𝑡(𝜃 |X) = Dir𝑞(𝜃; 𝛾 ) with 𝛾𝑗 =
1
2
+

𝑁
∑
𝑖=1

𝑋 𝑗
𝑖 .

We recall that the probability density function of a Dirichlet distribution of parameter 𝛾 is the429

following:430

Dir𝑞(𝑥; 𝛾 ) =
Γ(∑𝑞

𝑗=1 𝛾𝑗)

∏𝑞
𝑗=1 Γ(𝛾𝑗)

𝑞
∏
𝑗=1

𝑥
𝛾𝑗−1
𝑗 .

We also use the fact that the marginal distributions of the Dirichlet distribution are Beta distributions,431

i.e., if 𝑥 ∼ Dir𝑞(𝛾 ), then, for every 𝑗 ∈ {1, … , 𝑞}, 𝑥𝑗 ∼ Beta(𝛾𝑗, ∑𝑘≠𝑗 𝛾𝑘). The Beta distribution can be432

seen as a particular case of Dirichlet distribution of dimension 𝑞 = 2.433

Although the Jeffreys prior is the prior that maximizes the mutual information, Berger and Bernardo434

(1992a) and Berger, Bernardo, and Sun (2015) argue that other priors for the multinomial model are435

more suited in terms of non-informativeness as the dimension of 𝜃 increases. According to them, an436

appropriate prior is the 𝑚-group reference prior, where the parameters are grouped into 𝑚 groups on437

which a specific ordering is imposed (1 ≤ 𝑚 ≤ 𝑞). The Jeffreys prior is the 1-group reference prior438

with this definition, while the authors suggest that the 𝑞-group one is more appropriate. Nevertheless,439
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our approach consists in approximating the prior yielding the highest mutual information when no440

ordering is imposed on the parameters, hence, the Jeffreys prior is still the target prior in this regard.441

We opt for a simple neural network with one linear layer and a Softmax activation function assuring442

that all components are positive and sum to 1. Explicitly, we have that:443

𝜃 = Softmax(𝑊 𝜀 + 𝑏),

with 𝑊 ∈ ℝ4×𝑝 the weight matrix and 𝑏 ∈ ℝ4 the bias vector. The density function of 𝜃 does not444

have a closed expression. The following results are obtained with 𝛼 = 0.5 for the divergence and the445

lower bound is used as the objective function.446
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Figure 1: Monte Carlo estimation of the generalized mutual information with 𝛼 = 0.5 (from 200
samples) for 𝜋𝜆𝑒 where 𝜆𝑒 is the parameter of the neural network at epoch 𝑒. The red curve is the mean
value and the gray zone is the 95% confidence interval. The learning rate used in the optimization is
0.0025.
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Figure 2: Histograms of the fitted prior and the marginal density functions of the Jeffreys prior
Dir(12 ,

1
2 ,

1
2 ,

1
2 ) for each dimension of 𝜃, each histogram is obtained from 105 samples.

For the posterior distribution, we sample 10 times from the Multinomial distribution using 𝜃𝑡𝑟𝑢𝑒 =447

(14 ,
1
4 ,

1
4 ,

1
4 ). The covariance matrix in the proposition distribution of the Metropolis-Hastings algo-448

rithm is not diagonal, since we have a relation between the different components of 𝜃, we introduce449

non-zero covariances. We also verified that the auto-correlation between the successive remaining450

samples of the Markov chain decreases rapidly on each component.451
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Figure 3: Histograms of the fitted posterior and the marginal density functions of the Jeffreys posterior
for each dimension of 𝜃, each histogram is obtained from 5 ⋅ 104 samples.

We notice (Figure 1) that the mutual information lies between 0 and 1/𝛼(1−𝛼) = 4, which is coherent452

with the theory, the confidence interval is rather large, but the mean value has an increasing trend.453

In order to obtain more reliable values for the mutual information, one can use more samples in the454

Monte Carlo estimates at the cost of heavier computations.455

Although the shape of the fitted prior resembles the one of the Jeffreys prior, one can notice that it456

tends to put more weight towards the extremities of the interval (Figure 2). The posterior distribution457

however is quite similar to the target Jeffreys posterior on every component (Figure 3).458

Since the multinomial model is simple and computationally practical, we would like to quantify the459

effect on the output of the algorithm of some hyperparameters, namely, the divergence parameter460

𝛼, the dimension of the latent space 𝑝 and the addition of a hidden layer in the neural network. In461

order to do so, we utilize the maximum mean discrepancy (MMD) defined as:462

MMD(ℙ, ℚ) = ||𝜇ℙ − 𝜇ℚ||ℋ,

where 𝜇ℙ and 𝜇ℚ are respectively the kernel mean embeddings of distributions ℙ and ℚ in a repro-463

ducible kernel Hilbert space (RKHS) (ℋ , || ⋅ ||ℋ), meaning: 𝜇ℙ(𝜃′) = 𝔼𝜃∼ℙ[𝐾(𝜃, 𝜃′)] for all 𝜃′ ∈ Θ and464

𝐾 being the kernel. The MMD is used for instance in the context of two-sample tests (Gretton et al.465

(2012)), whose purpose is to compare distributions. We use in our computations the Gaussian or RBF466

kernel:467

𝐾(𝜃, 𝜃′) = exp(−0.5 ⋅ ||𝜃 − 𝜃′||22),

for which the MMD is a metric, this means that the following implication:468

MMD(ℙ, ℚ) = 0 ⟹ ℙ = ℚ

is verified with the other axioms. In practice, we consider an unbiased estimator of the MMD2 given469

by:470

M̂MD2(ℙ, ℚ) = 1
𝑚(𝑚 − 1)

∑
𝑖≠𝑗

𝐾(𝑥𝑖, 𝑥𝑗) +
1

𝑛(𝑛 − 1)
∑
𝑖≠𝑗

𝐾(𝑦𝑖, 𝑦𝑗) −
2
𝑚𝑛

∑
𝑖,𝑗

𝐾(𝑥𝑖, 𝑦𝑗),

where (𝑥1, ..., 𝑥𝑚) and (𝑦1, ..., 𝑦𝑛) are samples fromℙ andℚ respectively. In our case, ℙ is the distribution471

obtained through variational inference and ℚ is the target Jeffreys distribution. Since the MMD can472

be time-consuming or memory inefficient to compute in practice for very large samples, we consider473

only the last 2 ⋅ 104 entries of our priors and posterior samples.474
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𝛼 Prior Posterior

0.10 7.07 × 10−2 2.09 × 10−3
0.25 7.42 × 10−2 3.39 × 10−3
0.50 5.26 × 10−2 1.96 × 10−3
0.75 7.80 × 10−2 1.50 × 10−3
0.90 6.15 × 10−2 4.84 × 10−4

Table 1: MMD values for different 𝛼-divergences at prior and posterior levels. As a reference on
the prior level, when computing the criterion between two independent Dirichlet Dir(12 ,

1
2 ,

1
2 ,

1
2 )

distributions (i.e. the Jeffreys prior) on 2 ⋅ 104 samples, we obtain an order of magnitude of 10−3. For
the posterior level, for which the marginal densities do not diverge at zero, this reference has an
order of magnitude of 10−4.

Firstly, we are interested in the effect of changing the value of 𝛼 in the 𝛼-divergence, while keeping475

𝑝 = 50 and the same neural network architecture. According to Table 1, the difference between 𝛼476

values in terms of the MMD criterion is essentially inconsequential. One remark is that the mutual477

information tends to be more unstable as 𝛼 gets closer to 1. The explanation is that when 𝛼 tends to478

1, we have the approximation:479

̂𝑓𝛼(𝑥) ≈
𝑥 − 1

𝛼(𝛼 − 1)
+
𝑥 log(𝑥)

𝛼
,

which diverges for all 𝑥 because of the first term. Hence, we advise the user to avoid 𝛼 values that480

are too close to 1. In the following, we use 𝛼 = 0.5 for the divergence.481

Secondly, we look at the effect on the dimension of the latent space denoted 𝑝 for the previously482

defined neural network architecture, but also when a second layer is added:483

𝜃 = Softmax (𝑊2 ⋅ PReLU𝜁(𝑊1𝜀 + 𝑏1) + 𝑏2) ,

with 𝑊1 ∈ ℝ10×𝑝, 𝑊2 ∈ ℝ4×10 the weight matrices and 𝑏1 ∈ ℝ10, 𝑏2 ∈ ℝ4 the bias vectors. The added484

hidden layer is of dimension 10, the activation function between the two layers is the parametric485

rectified linear unit (PReLU) which is defined as:486

PReLU𝜁(𝑥) = {
𝑥 if 𝑥 ≥ 0
𝜁 𝑥 if 𝑥 < 0,

with 𝜁 > 0 a learnable parameter. The activation function is applied element-wise.487

𝑝 Prior (1 layer) Posterior (1 layer) Prior (2 layers)
Posterior (2
layers)

25 8.16 × 10−2 2.02 × 10−3 2.43 × 10−1 2.80 × 10−2
50 5.26 × 10−2 1.96 × 10−3 3.23 × 10−1 7.09 × 10−2
75 5.35 × 10−2 3.79 × 10−3 2.59 × 10−1 1.41 × 10−2
100 3.21 × 10−2 2.75 × 10−3 2.41 × 10−1 1.47 × 10−2
200 4.02 × 10−2 1.84 × 10−3 2.10 × 10−1 2.71 × 10−2
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𝑝 Prior (1 layer) Posterior (1 layer) Prior (2 layers)
Posterior (2
layers)

Table 2: MMD values for different 𝛼-divergences at prior and posterior levels. As a reference on
the prior level, when computing the criterion between two independent Dirichlet Dir(12 ,

1
2 ,

1
2 ,

1
2 )

distributions (i.e. the Jeffreys prior) on 2 ⋅ 104 samples, we obtain an order of magnitude of 10−3. For
the posterior level, for which the marginal densities do not diverge at zero, this reference has an
order of magnitude of 10−4.

Several observations can be made thanks to Table 2. Firstly, looking at the table column-wise, one488

can notice that the value of 𝑝 tends to have little influence on the MMD values, since the order of489

magnitude always remains the same for each column. We remark also that the MMD values for the490

simple neural network with one layer are always lower than those for the neural network with the491

additional hidden layer when reading the table row-wise. This is true for all values of 𝑝 at both the492

prior and the posterior level. It is important to note that these experiments were conducted with fixed493

values of 𝑇 and 𝑈, which determine the number of samples used in the Monte Carlo approximation494

of the objective function’s gradient. We note that increasing 𝑇 and 𝑈 could improve the quality of495

VA-RP approximations for more complex networks. However, doing so exponentially increases the496

computational cost of the method.497

4.2 Probit model498

We present in this section the probit model used to estimate seismic fragility curves, which was499

introduced by Kennedy et al. (1980), it is also referred as the log-normal model in the literature. A500

seismic fragility curve is the probability of failure 𝑃𝑓(𝑎) of a mechanical structure subjected to a501

seism as a function of a scalar value 𝑎 derived from the seismic ground motion. The properties of the502

Jeffreys prior for this model are highlighted by Van Biesbroeck et al. (2024).503

The model is defined by the observation of an i.i.d. sample X = (𝑋1, … , 𝑋𝑁) where for any 𝑖, 𝑋𝑖 ∼504

(𝑍 , 𝑎) ∈ 𝒳 = {0, 1}×(0, ∞). The distribution of the r.v. (𝑍 , 𝑎) is parameterized by 𝜃 = (𝜃1, 𝜃2) ∈ (0,∞)2505

as:506

⎧⎪
⎨⎪
⎩

𝑎 ∼ Log-𝒩 (𝜇𝑎, 𝜎2𝑎 )

𝑃𝑓(𝑎) = Φ (
log 𝑎 − log 𝜃1

𝜃2
)

𝑍 ∼ Bernoulli(𝑃𝑓(𝑎)),

where Φ is the cumulative distribution function of the standard Gaussian. The probit function is the507

inverse of Φ. The likelihood is of the form:508

⎧⎪
⎨
⎪
⎩

𝐿𝑁(X | 𝜃) =
𝑁
∏
𝑖=1

𝑝(𝑎𝑖)
𝑁
∏
𝑖=1

𝑃𝑓(𝑎𝑖)𝑍𝑖(1 − 𝑃𝑓(𝑎𝑖))1−𝑍𝑖 ∝
𝑁
∏
𝑖=1

𝑃𝑓(𝑎𝑖)𝑍𝑖(1 − 𝑃𝑓(𝑎𝑖))1−𝑍𝑖

𝑝(𝑎𝑖) =
1

𝑎𝑖√2𝜋𝜎2𝑎
exp (− 1

2𝜎2𝑎
(log 𝑎𝑖 − 𝜇𝑎)2) .

For simplicity, we denote: 𝛾𝑖 =
log 𝑎𝑖 − log 𝜃1

𝜃2
= Φ−1(𝑃𝑓(𝑎𝑖)) = probit(𝑃𝑓(𝑎𝑖)), the gradient of the509

log-likelihood is the following:510
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⎧⎪
⎨
⎪
⎩

𝜕 log 𝐿𝑁
𝜕𝜃1

(X | 𝜃) =
𝑁
∑
𝑖=1

1
𝜃1𝜃2

((−𝑍𝑖)
Φ′(𝛾𝑖)
Φ(𝛾𝑖)

+ (1 − 𝑍𝑖)
Φ′(𝛾𝑖)

1 − Φ(𝛾𝑖)
)

𝜕 log 𝐿𝑁
𝜕𝜃2

(X | 𝜃) =
𝑁
∑
𝑖=1

𝛾𝑖
𝜃2

((−𝑍𝑖)
Φ′(𝛾𝑖)
Φ(𝛾𝑖)

+ (1 − 𝑍𝑖)
Φ′(𝛾𝑖)

1 − Φ(𝛾𝑖)
) .

There is no explicit formula for the MLE, so it has to be approximated using samples. This statistical511

model is a more difficult case than the previous one, since no explicit formula for the Jeffreys prior is512

available either but it has been shown by Van Biesbroeck et al. (2024) that it is improper in 𝜃2 and513

some asymptotic rates where derived. More precisely, when 𝜃1 > 0 is fixed,514

{
𝐽 (𝜃) ∝ 1/𝜃2 as 𝜃2 ⟶ 0
𝐽(𝜃) ∝ 1/𝜃32 as 𝜃2 ⟶ +∞.

If we fix 𝜃2 > 0, the prior is proper for the variable 𝜃1:515

𝐽 (𝜃) ∝
| log 𝜃1|

𝜃1
exp (−

(log 𝜃1 − 𝜇𝑎)2

2𝜃2 + 2𝜎2𝑎
) when | log 𝜃1| ⟶ +∞.

which resembles a log-normal distribution except for the | log 𝜃1| factor. Since the density of the516

Jeffreys prior is not explicit and can not be computed directly, the Fisher information matrix is517

computed in Van Biesbroeck et al. (2024) using numerical integration with Simpson’s rule on a518

specific grid and then an interpolation is applied. We use this computation as the reference to evaluate519

the quality of the output of our algorithm. In the mentioned article, the posterior distribution is520

also computed with an adaptive Metropolis-Hastings algorithm on the variable 𝜃, we refer to this521

algorithm as MH(𝜃) since it is different from the one mentioned in Section 3.4. More details on MH(𝜃)522

are given in Gauchy (2022). We take 𝜇𝑎 = 0, 𝜎2𝑎 = 1, 𝑁 = 500 and 𝑈 = 500 for the computation of the523

prior.524

As for the neural network, we use a one-layer network with an exp activation for 𝜃1 and a Softplus525

activation for 𝜃2. We have that:526

𝜃 = (𝜃1𝜃2
) = ( exp(𝑤⊤

1 𝜀 + 𝑏1)
log (1 + exp(𝑤⊤

2 𝜀 + 𝑏2))
) ,

with 𝑤1, 𝑤2 ∈ ℝ𝑝 the weight vectors and 𝑏1, 𝑏2 ∈ ℝ the biases, thus we have 𝜆 = (𝑤1, 𝑤2, 𝑏1, 𝑏2).527

Because this architecture remains simple, it is possible to elucidate the resultingmarginal distributions528

of 𝜃1 and 𝜃2. The first component 𝜃1 follows a Log-𝒩 (𝑏1, ||𝑤1||22) distribution and 𝜃2 has an explicit529

density function:530

𝑝(𝜃2) =
1

√2𝜋||𝑤2||
2
2(1 − 𝑒−𝜃2)

exp (− 1
2||𝑤2||22

(log(𝑒𝜃2 − 1) − 𝑏2)
2
) .

These expressions describe the parameterized set𝒫Λ of priors considered in the optimization problem.531

This set is restrictive, so that the resulting VA-RPmust be interpreted as themost objective —according532

to the mutual information criterion— prior among the ones in 𝒫Λ. Since we do not know any explicit533

expression of the Jeffreys prior for this prior, we cannot provide a precise comparison between the534

parameterized VA-RP elucidated above and the target. However, the form of the distribution of535
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𝜃1 qualitatively resembles its theoretical target. In the case of 𝜃2, the asymptotic decay rates of its536

density function can be derived:537

{
𝑝(𝜃2) =

𝜃2→0
1

𝜃2√2𝜋‖𝑤2‖2
exp (− (log 𝜃2−𝑏2)2

2‖𝑤2‖22
) ;

𝑝(𝜃2) =
𝜃2→∞

1
√2𝜋‖𝑤2‖2

exp (− (𝜃2−𝑏2)2

2‖𝑤2‖22
) .

(12)

While ‖𝑤2‖2 does not tend toward ∞, these decay rates strongly differ from the ones of the Jeffreys538

prior w.r.t. 𝜃2. Otherwise, the decay rates resemble to something proportional to (𝜃2 + 1)−1 in both539

directions. In our numerical computations, the optimization process yielded a VA-RP with parameters540

𝑤2 and 𝑏2 that did not diverge to extreme values.541
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Figure 4: Monte Carlo estimation of the generalized mutual information with 𝛼 = 0.5 (from 100
samples) for 𝜋𝜆𝑒 where 𝜆𝑒 is the parameter of the neural network at epoch 𝑒. The red curve is the mean
value and the gray zone is the 95% confidence interval. The learning rate used in the optimization is
0.001.

In Figure 4 is shown the evolution of the mutual information through the optimization of the VA-RP542

for the probit model. We perceive high mutual information values at the initialization, which we543

interpret as a result of the fact that the parametric prior on 𝜃1 is already quite close to its target544

distribution.545

With 𝛼-divergences, using a moment constraint of the form 𝑎(𝜃2) = 𝜃𝜅2 for the second component546

is relevant here as long as 𝜅 ∈ (0, 2
1+1/𝛼), to ensure that the resulting constrained prior is indeed547

proper. With 𝛼 = 0.5, we take the value 𝜅 = 1/8 and we use the same neural network. The evolution548

of the mutual information through the optimization of the constrained VA-RP is proposed in Figure 5.549

In Figure 6 is presented the evolution of the constrained gap: the difference between the target and550

current values for the constraint.551

For the posterior, we take as dataset 50 samples from the probit model with 𝜃𝑡𝑟𝑢𝑒 close to (3.37, 0.43).552

For computational reasons, the Metropolis-Hastings algorithm is applied for only 5 ⋅ 104 iterations.553

An important remark is that if the size of the dataset is rather small, the probability that the data554

is degenerate is not negligible. By degenerate data, we refer to situations when the data points are555

partitioned into two disjoint subsets when classified according to 𝑎 values, the posterior becomes556

improper because the likelihood is constant (Van Biesbroeck et al. (2024)). In such cases, the557
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Figure 5: Monte Carlo estimation of the generalized mutual information with 𝛼 = 0.5 (from 100
samples) for 𝜋𝜆𝑒 where 𝜆𝑒 is the parameter of the neural network at epoch 𝑒. The red curve is the mean
value and the gray zone is the 95% confidence interval. The learning rate used in the optimization is
0.0005.
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Figure 6: Evolution of the constraint value gap during training. It corresponds to the difference
between the target and current values for the constraint (in absolute value)
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convergence of the Markov chains is less apparent, the plots for this section are obtained with558

non-degenerate datasets.559
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Figure 7: Scatter histogram of the unconstrained fitted posterior and the Jeffreys posterior distribu-
tions obtained from 5000 samples. Kernel density estimation is used on the marginal distributions in
order to approximate their density functions with Gaussian kernels.

As Figure 7 shows, we obtain a relevant approximation of the true Jeffreys posterior especially on560

the variable 𝜃1, whereas a small difference is present for the tail of the distribution on 𝜃2. The latter561

remark was expected regarding the analytical study of the marginal distribution of 𝜋𝜆 w.r.t. 𝜃2 given562

the architecture considered for the VA-RP (see Equation 12). It is interesting to see that the difference563

between the posteriors is harder to discern in the neighborhood of 𝜃2 = 0. Indeed, in such case where564

the data are not degenerate, the likelihood provides a strong decay rate when 𝜃2 → 0 that makes the565

influence of the prior negligible (see Van Biesbroeck et al. (2024)):566

𝐿𝑁(X | 𝜃) =
𝜃2→0

𝜃 ‖𝜒‖
2
2

2 exp (− 1
2𝜃22

𝑁
∑
𝑖=1

𝜒𝑖(log 𝑎𝑖 − log 𝜃1)2) ,

where 𝜒 ∈ {0, 1}𝑁 is a non-null vector that depends on X.567

When 𝜃2 → ∞, however, the likelihood does not reduce the influence of the prior as it remains568

asymptotically constant: 𝐿𝑁(X | 𝜃) →
𝜃2→∞

2−𝑁.569

The result on the constrained case (Figure 8) is very similar to the unconstrained one.570

Altogether, one can observe that the variational inference approach yields close results to the571

numerical integration approach (Van Biesbroeck et al. (2024)), with or without constraints, even572
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Figure 8: Scatter histogram of the constrained fitted posterior and the target posterior distributions
obtained from 5000 samples. Kernel density estimation is used on the marginal distributions in order
to approximate their density functions with Gaussian kernels.
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though the matching of the decay rates w.r.t. 𝜃2 remains limited given the simple network that we573

have used in this case.574

To ascertain the relevancy of our posterior approximation, we compute the posterior mean euclidean575

norm difference 𝔼𝜃 [||𝜃 − 𝜃𝑡𝑟𝑢𝑒||] as a function of the size of the dataset. In each computation, the576

neural network remains the same but the dataset changes by adding new entries.577

Furthermore, in order to assess the stability of the stochastic optimization with respect to the random578

number generator (RNG) seed, we also compute the empirical cumulative distribution functions579

(ECDFs) for each posterior distribution. For every seed, the parameters of the neural network are580

expected to be different, we keep the same dataset for the MCMC sampling however.581

Finally, we compute the ECDFs for different values of the dimension of the latent space 𝑝 in order to582

quantify the sensitivity of the output distributions with respect to this hyperparameter.583

These computations are done in the unconstrained case as well as the constrained one. The different584

plots and details can be found in Section 6.585

5 Conclusion586

In this work, we developed an algorithm to perform variational approximation of objective priors587

using a generalized definition of mutual information based on 𝑓-divergences. To enhance compu-588

tational efficiency, we derived a lower bound of the generalized mutual information. Additionally,589

because the objective priors of interest, which are Jeffreys priors, often yield improper posteriors, we590

adapted the variational definition of the problem to incorporate constraints that ensure the posteriors591

are proper.592

Numerical experiments have been carried out on various test cases of different complexities in593

order to validate our approach. These test cases range from purely toy models to more real-world594

problems, namely the estimation of seismic fragility curve parameters using a probit statistical595

model. The results demonstrate the usefulness of our approach in estimating both prior and posterior596

distributions across various problems, including problems where the theoretical expression of the597

target prior is cumbersome to compute.598

Our development is supported by an open source and flexible implementation, which can be adapted599

to a wide range of statistical models.600

Looking forward, the approximation of the tails of the reference priors should be improved, but601

this is a complex and general problem in the field of variational approximation. Furthermore, the602

stability of the algorithm which seems to depend on the statistical model and the architecture of the603

neural network is an other issue to be addressed. An extension of this work to the approximation of604

Maximal Data Information (MDI) priors is also appealing, thanks to the fact that MDI are proper605

under certain assumptions precised in Bousquet (2008).606
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6 Appendix610

6.1 Gradient computation of the generalized mutual information611

We recall that 𝐹(𝑥) = 𝑓 (𝑥) − 𝑥𝑓 ′(𝑥) and 𝑝𝜆 is a shortcut notation for 𝑝𝜋𝜆,𝑁 being the marginal612

distribution under 𝜋𝜆. The generalized mutual information writes:613

𝐼D𝑓(𝜋𝜆; 𝐿𝑁) = ∫
Θ
D𝑓(𝑝𝜆||𝐿𝑁(⋅ | 𝜃))𝜋𝜆(𝜃)𝑑𝜃

= ∫
Θ
∫
𝒳𝑁

𝜋𝜆(𝜃)𝐿𝑁(X | 𝜃)𝑓 (
𝑝𝜆(X)

𝐿𝑁(X | 𝜃)
) 𝑑X𝑑𝜃.

For each 𝑙, taking the derivative with respect to 𝜆𝑙 yields:614

𝜕𝐼D𝑓

𝜕𝜆𝑙
(𝜋𝜆; 𝐿𝑁) = ∫

Θ
∫
𝒳𝑁

𝜕𝜋𝜆
𝜕𝜆𝑙

(𝜃)𝐿𝑁(X | 𝜃)𝑓 (
𝑝𝜆(X)

𝐿𝑁(X | 𝜃)
) 𝑑X𝑑𝜃

+ ∫
Θ
∫
𝒳𝑁

𝜋𝜆(𝜃)𝐿𝑁(X | 𝜃)
𝜕𝑝𝜆
𝜕𝜆𝑙

1
𝐿𝑁(X | 𝜃)

(X)𝑓 ′ (
𝑝𝜆(X)

𝐿𝑁(X | 𝜃)
) 𝑑X𝑑𝜃,

or in terms of expectations:615

𝜕𝐼D𝑓

𝜕𝜆𝑙
(𝜋𝜆; 𝐿𝑁) =

𝜕
𝜕𝜆𝑙

𝔼𝜃∼𝜋𝜆 [ ̃𝐼 (𝜃)] + 𝔼𝜃∼𝜋𝜆 [𝔼X∼𝐿𝑁(⋅|𝜃) [
1

𝐿𝑁(X | 𝜃)
𝜕𝑝𝜆
𝜕𝜆𝑙

(X)𝑓 ′ (
𝑝𝜆(X)

𝐿𝑁(X | 𝜃)
)]] ,

where:616

̃𝐼 (𝜃) = ∫
𝒳𝑁

𝐿𝑁(X | 𝜃)𝑓 (
𝑝𝜆(X)

𝐿𝑁(X | 𝜃)
) 𝑑X.

We note that the derivative with respect to 𝜆𝑙 does not apply to ̃𝐼 in the previous equation. Using the617

chain rule yields:618

𝜕
𝜕𝜆𝑙

𝔼𝜃∼𝜋𝜆 [ ̃𝐼 (𝜃)] = 𝜕
𝜕𝜆𝑙

𝔼𝜀 [ ̃𝐼 (𝑔(𝜆, 𝜀))] = 𝔼𝜀 [
𝑞
∑
𝑗=1

𝜕 ̃𝐼
𝜕𝜃𝑗

(𝑔(𝜆, 𝜀))
𝜕𝑔𝑗
𝜕𝜆𝑙

(𝜆, 𝜀)] .

We have the following for every 𝑗 ∈ {1, ..., 𝑞}:619

𝜕 ̃𝐼
𝜕𝜃𝑗

(𝜃) = ∫
𝒳𝑁

−𝑝𝜆(X)
𝐿𝑁(X | 𝜃)

𝜕𝐿𝑁
𝜕𝜃𝑗

(X | 𝜃)𝑓 ′ (
𝑝𝜆(X)

𝐿𝑁(X | 𝜃)
) + 𝑓 (

𝑝𝜆(X)
𝐿𝑁(X | 𝜃)

)
𝜕𝐿𝑁
𝜕𝜃𝑗

(X | 𝜃)𝑑X

= ∫
𝒳𝑁

𝐹 (
𝑝𝜆(X)

𝐿𝑁(X | 𝜃)
)
𝜕𝐿𝑁
𝜕𝜃𝑗

(X | 𝜃)𝑑X

= 𝔼X∼𝐿𝑁(⋅|𝜃) [
𝜕 log 𝐿𝑁

𝜕𝜃𝑗
(X | 𝜃)𝐹 (

𝑝𝜆(X)
𝐿𝑁(X | 𝜃)

)] .

Putting everything together, we finally obtain the desired formula. The gradient of the generalized620

lower bound function is obtained in a very similar manner.621

In what follows, we prove that the gradient of 𝐼D𝑓 , as formulated in Equation 10 aligns with the form622

of Equation 9. We write, for 𝑙 ∈ {1, … , 𝐿}:623

𝜕𝐼D𝑓

𝜕𝜆𝑙
(𝜋𝜆; 𝐿𝑁) = 𝔼𝜀 [

𝑞
∑
𝑗=1

𝜕 ̃𝐼
𝜕𝜃𝑗

(𝑔(𝜆, 𝜀))
𝜕𝑔𝑗
𝜕𝜆𝑙

(𝜆, 𝜀)] + 𝒢𝑙,
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where624

𝒢𝑙 = 𝔼𝜃∼𝜋𝜆𝔼X∼𝐿𝑁(⋅|𝜃) [
1

𝐿𝑁(X|𝜃)
𝜕𝑝𝜆
𝜕𝜆𝑙

(X)𝑓 ′ (
𝑝𝜆(X)
𝐿𝑁(X|𝜃)

)] .

We remark that625

𝜕𝑝𝜆
𝜕𝜆𝑙

(X) = 𝔼𝜀2

𝑞
∑
𝑗=1

𝜕𝐿𝑁
𝜕𝜃𝑗

(X|𝑔(𝜆, 𝜀2))
𝜕𝑔𝑗
𝜕𝜆𝑙

(𝜆, 𝜀2).

Thus, we can develop 𝒢𝑙 as:626

𝒢𝑙 =𝔼𝜀1𝔼X∼𝐿𝑁(⋅|𝑔(𝜆,𝜀1))𝔼𝜀2 ∑
𝑗

1
𝐿𝑁(X|𝑔(𝜆, 𝜀1))

𝑓 ′ (
𝑝𝜆(X)

𝐿𝑁(X|𝑔(𝜆, 𝜀1))
)
𝜕𝐿𝑁
𝜕𝜃𝑗

(X|𝑔(𝜆, 𝜀2))
𝜕𝑔𝑗
𝜕𝜆𝑙

(𝜆, 𝜀2)

=𝔼𝜀2𝔼𝜀1𝔼X∼𝐿𝑁(⋅|𝑔(𝜆,𝜀1))∑
𝑗

1
𝐿𝑁(X|𝑔(𝜆, 𝜀1))

𝑓 ′ (
𝑝𝜆(X)

𝐿𝑁(X|𝑔(𝜆, 𝜀1))
)
𝜕𝐿𝑁
𝜕𝜃𝑗

(X|𝑔(𝜆, 𝜀2))
𝜕𝑔𝑗
𝜕𝜆𝑙

(𝜆, 𝜀2)

=𝔼𝜀2

𝑞
∑
𝑗=1

𝜕𝑔𝑗
𝜕𝜆𝑙

(𝜆, 𝜀2)𝔼𝜀1𝔼X∼𝐿𝑁(⋅|𝑔(𝜆,𝜀1))
1

𝐿𝑁(X|𝑔(𝜆, 𝜀1))
𝑓 ′ (

𝑝𝜆(X)
𝐿𝑁(X|𝑔(𝜆, 𝜀1))

)
𝜕𝐿𝑁
𝜕𝜃𝑗

(X|𝑔(𝜆, 𝜀2)).

Now, calling 𝐾̃ the function defined as follows:627

𝐾̃ ∶ 𝜃 ↦ 𝐾̃(𝜃) = 𝔼𝜀1𝔼X∼𝐿𝑁(⋅|𝑔(𝜆,𝜀1)) [
1

𝐿𝑁(X|𝑔(𝜆, 𝜀1))
𝑓 ′ (

𝑝𝜆(X)
𝐿𝑁(X|𝑔(𝜆, 𝜀1))

) 𝐿𝑁(X|𝜃)] ,

we obtain that628

𝒢𝑙 = 𝔼𝜀2

𝑞
∑
𝑗=1

𝜕𝑔𝑗
𝜕𝜆𝑙

(𝜆, 𝜀2)
𝜕𝐾̃
𝜕𝜃𝑗

(𝑔(𝜆, 𝜀2)).

Eventually, denoting ̃I = 𝐾̃ + ̃𝐼, we have:629

𝜕𝐼𝐷𝑓

𝜕𝜆𝑙
(𝜋𝜆; 𝐿𝑁) = 𝔼𝜀 [

𝑞
∑
𝑗=1

𝜕 ̃I
𝜕𝜃𝑗

(𝑔(𝜆, 𝜀))
𝜕𝑔𝑗
𝜕𝜆𝑙

(𝜆, 𝜀)] ,

which is compatible with the form of Equation 9.630

6.2 Gaussian distribution with variance parameter631

We consider a normal distribution where 𝜃 is the variance parameter: 𝑋𝑖 ∼ 𝒩 (𝜇, 𝜃) with 𝜇 ∈ ℝ,632

X ∈ 𝒳𝑁 = ℝ𝑁 and 𝜃 ∈ ℝ∗+. We take 𝜇 = 0. The likelihood and score functions are:633

𝐿𝑁(X | 𝜃) =
𝑁
∏
𝑖=1

1
√2𝜋𝜃

exp (− 1
2𝜃
(𝑋𝑖 − 𝜇)2)

𝜕 log 𝐿𝑁
𝜕𝜃

(X | 𝜃) = − 𝑁
2𝜃

+ 1
2𝜃2

𝑁
∑
𝑖=1

(𝑋𝑖 − 𝜇)2.

The MLE is available: ̂𝜃𝑀𝐿𝐸 = 1
𝑁 ∑𝑁

𝑖=1 𝑋𝑖. However, the Jeffreys prior is an improper distribution in634

this case: 𝐽 (𝜃) ∝ 1/𝜃. Nevertheless, the Jeffreys posterior is a proper inverse-gamma distribution:635

𝐽𝑝𝑜𝑠𝑡(𝜃 | X) = Γ−1 (𝜃; 𝑁
2
, 1
2

𝑁
∑
𝑖=1

(𝑋𝑖 − 𝜇)2) .
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Figure 9: Left: Monte Carlo estimation of the generalized mutual information with 𝛼 = 0.5 (from 200
samples) for 𝜋𝜆𝑒 where 𝜆𝑒 is the parameter of the neural network at epoch 𝑒. The red curve is the
mean value and the gray zone is the 95% confidence interval. Right: Histograms of the initial prior
(at epoch 0) and the fitted prior (after training), each one is obtained from 105 samples. The learning
rate used in the optimization is 0.025.

We use a neural network with one layer and a Softplus activation function. The dimension of the636

latent variable 𝜀 is 𝑝 = 10.637

We retrieve close results to those of Gauchy et al. (2023), even though we used the 𝛼-divergence638

instead of the classic KL-divergence (Figure 9). The evolution of the mutual information seems to be639

more stable during training. We can not however directly compare our result to the target Jeffrey640

prior since the latter is improper.641

For the posterior distribution, we sample 10 times from the normal distribution using 𝜃𝑡𝑟𝑢𝑒 = 1.642
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Figure 10: Left: Markov chain during the Metropolis-Hastings iterations. Right: Histogram of the
fitted posterior obtained from 5 ⋅ 104 samples and the density function of the Jeffreys posterior.

As Figure 10 shows, we obtain a parametric posterior distribution which closely resembles the target643

distribution, even though the theoretical prior is improper.644

In order to evaluate the performance of the algorithm for the prior, we have to add a constraint. The645

simplest kind of constraints are moment constraints with: 𝑎(𝜃) = 𝜃𝛽, however, we can not use such a646

constraint here since the integrals for 𝒦 and 𝑐 from Section 2 would diverge either at 0 or at +∞.647

If we define: 𝑎(𝜃) = 1
𝜃𝛽 + 𝜃 𝜏

with 𝛽 < 0 < 𝜏, then the integrals for 𝒦 and 𝑐 are finite, because:648

∀ 𝛿 ≥ 1, ∫
+∞

0

1
𝜃
⋅ ( 1

𝜃𝛽 + 𝜃 𝜏
)
𝛿
𝑑𝜃 ≤ 1

𝛿
(1
𝜏
− 1
𝛽
) .
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This function of constraint 𝑎 is preferable because it yields different asymptotic rates at 0 and +∞:649

{
𝑎(𝜃) ∼ 𝜃−𝛽 as 𝜃 ⟶ 0
𝑎(𝜃) ∼ 𝜃−𝜏 as 𝜃 ⟶ +∞.

In order to apply the algorithm, we are interested in finding:650

𝒦 = ∫
+∞

0

1
𝜃
⋅ 𝑎(𝜃)1/𝛼𝑑𝜃 and 𝑐 = ∫

+∞

0

1
𝜃
⋅ 𝑎(𝜃)1+(1/𝛼)𝑑𝜃.

For instance, let 𝛼 = 1/2. If 𝛽 = −1, 𝜏 = 1, then 𝒦 = 1/2 and 𝑐 = 𝜋/16. The constraint value is651

𝑐/𝒦 = 𝜋/8. Thus, for this example, we only have to apply the third step of the proposed method.652

We use in this case a one-layer neural network with exp as the activation function, the parametric653

set of priors corresponds to log-normal distributions.654
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Figure 11: Histogram of the constrained fitted prior obtained from 105 samples, and density function
of the target prior. The learning rate used in the optimization is 0.0005.

In this case we are able to compare prior distributions since both are proper, as Figure 11 shows, we655

recover a relevant result using our algorithm even with added constraints.656

The density function of the posterior is known up to a multiplicative constant, more precisely, it657

corresponds to the product of the constraint function and the density function of an inverse-gamma658

distribution. Hence, the constant can be estimated using Monte Carlo samples from the inverse-659

gamma distribution in question. We apply the same approach as before in order to obtain the660

posterior from the parametric prior.661

As shown in Figure 12, the parametric posterior has a shape similar to the theoretical distribution.662

6.3 Probit model and robustness663

As mentioned in Section 4.2 regarding the probit model, we present several additional results.664

Figure 13 and Figure 14 show the evolution of the posterior mean norm difference as the size 𝑁 of the665

dataset considered for the posterior distribution increases. For each value of 𝑁, 10 different datasets666

are used in order to quantify the variability of said error. The proportion of degenerate datasets is667
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Figure 12: Histogram of the fitted posterior obtained from 5 ⋅ 104 samples, and density function of
the target posterior.

0 25 50 75 100 125 150 175 200
N

0

1

2

3

4

5

6

M
ea

n 
No

rm
 D

iff
er

en
ce

Mean Approx
95% CI Approx
Mean Jeffreys
95% CI Jeffreys

Figure 13: Mean norm difference as a function of the size 𝑁 of the dataset for the unconstrained
fitted posterior and the Jeffreys posterior. For each value of 𝑁, 10 different datasets are considered
from which we obtain 95% confidence intervals.
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Figure 14: Mean norm difference as a function of the size 𝑁 of the dataset for the constrained fitted
posterior and the Jeffreys posterior. For each value of 𝑁, 10 different datasets are considered from
which we obtain 95% confidence intervals.

rather high when 𝑁 = 5 or 𝑁 = 10, the consequence is that the approximation tends to be more668

unstable. The main observation is that the error is decreasing in all cases when 𝑁 increases, also, the669

behaviour of the error for the fitted distributions on one hand, and the behaviour for the Jeffreys670

distribution on the other hand are quite similar in terms of mean value and confidence intervals.671
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Figure 15: Empirical cumulative distribution functions for the unconstrained fitted posterior and
the Jeffreys posterior using 5000 samples. The band is obtained by computing the ECDFs over 100
different seeds and monitoring the maximum and minimum ECDF values for each 𝜃.

Figure 15 and Figure 16 compare the empirical cumulative distribution functions of the fitted posterior672

and the Jeffreys posterior. In the unconstrained case, one can observe that the ECDFs are very close673

for 𝜃1, whereas the variability is slightly higher for 𝜃2 although still reasonable. When imposing674

a constraint on 𝜃2, one remarks that the variability of the result is higher. The Jeffreys ECDF is675

contained in the band when 𝜃2 is close to zero, but not when 𝜃2 increases (𝜃2 > 0.5). This is coherent676

with the previous scatter histograms where the Jeffreys posterior on 𝜃2 tends to have a heavier tail677

than the variational approximation.678

Altogether, despite the stochastic nature of the developed algorithm, we consider that the result679

tends to be reasonably robust to the RNG seed for the optimization part, and robust to the dataset680

used for the posterior distribution for the MCMC part.681
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Figure 16: Empirical cumulative distribution functions for the constrained fitted posterior and the
Jeffreys posterior using 5000 samples. The band is obtained by computing the ECDFs over 100
different seeds and monitoring the maximum and minimum ECDF values for each 𝜃.
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Figure 17: Empirical cumulative distribution functions for the constrained fitted posterior and the
Jeffreys posterior using 5000 samples. The band is obtained by computing the ECDFs over 100
different seeds and monitoring the maximum and minimum ECDF values for each 𝜃.
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Figure 18: Empirical cumulative distribution functions for the constrained fitted posterior and the
Jeffreys posterior using 5000 samples. The band is obtained by computing the ECDFs over 100
different seeds and monitoring the maximum and minimum ECDF values for each 𝜃.
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Figure 17 and Figure 18 compare the empirical cumulative distribution functions of the fitted posterior682

and the Jeffreys posterior when several values for the latent space dimension 𝑝 are considered. We683

observe that in both the unconstrained case and the constrained case, the ECDFs are quite different684

for the 𝜃1 component when 𝑝 varies, these differences are even more notable on 𝜃2. We remark that685

the fitted distributions for 𝑝 = 100 are the closest to the target Jeffreys distributions compared to686

lower values of 𝑝, but this is likely due to random chance, since when we keep increasing 𝑝 to 200,687

we obtain a worse approximation of the Jeffreys distributions. This last case is expected to be less688

stable due to the higher number of parameters to be fitted. The output of the algorithm is quite689

sensitive with respect to the choice of 𝑝 for the probit model, whereas for the multinomial model we690

noticed that this choice had little effect on the MMD values.691

A possible explanation for this behavior can be obtained by looking at the approximation of the692

target prior given in reference Van Biesbroeck et al. (2025), which exhibits a correlation between 𝜃1693

and 𝜃2. Thus, this allows us to numerically verify that even in the case where the prior is proper,694

the conditional variance of 𝜃2 and the variance of 𝜃1 are infinite due to the heavy tail in 𝜃2 ⟶ ∞.695

The instability of the algorithm therefore seems to be due to the fact that it aims to approach a696

distribution of infinite variance.697
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